Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
نویسندگان
چکیده
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineat cholinergic synapsesand terminates the cholinergic effects. Some chemical agents like organophosphorus compounds (OPCs) including nerve agents and pesticides react with acetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and result in accumulation of acetylcholineand show toxic effects andcholinergic symptoms. The process of Acetylcholinesterase (AChE) inhibition can be reversed by a nucleophilic agent to dephosphorylate and reactivate the enzyme. In this study, design and docking studies of 15 novel nitrone based onoximes as reactivators were performed by using AutoDock program. Then, more effective reactivatorsoximes in terms of binding energy and orientation within the active site were synthesized and evaluated in-vitro on human AChE (hAChE) inhibited by paraoxon and compared to standard hAChE reactivators (2-PAM and obidoxime). Our results used to design new derivatives of Oxim with better efficacy than 2-PAM and obidoxime. Syntheses of some selected bis-pyridiniumoximes based on the nitrones are underway.
منابع مشابه
Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملDocking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملComputational Design, Molecular Docking Study and Toxicity Prediction of Some Novel Pralidoxime Derivatives as reactivators of acetyl cholinesterase enzyme
Abstract Background & Objective: oximes as Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate compounds (OPCs) intoxication. Oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. Organophosphorus compounds (OPCs) such as soman, sarin, or VX react with acetyl cholinesterase irreversibly. In this research, a group o...
متن کاملSynthesis of the three monopyridinium oximes and evaluation of their potency to reactivate acetylcholinesterase inhibited by nerve agents
Three potential reactivators of nerve agents-inhibited acetylcholinesterase: 2-[(hydroxyimino)phenylmethyl]-1-methylpyridinium iodide 3a, 2-[(hydroxyimino)pyridin-2ylmethyl]-1-methylpyridinium iodide 3b and 2-[(1-hydroxyimino) ethyl]-1-methylpyridinium iodide 3c were synthesized. Their reactivation potency was examined using a standard in vitro reactivation test. A rat brain homogenate was used...
متن کاملDevelopment of New Reactivators of Tabun Inhibited Acetylcholinesterase and the Evaluation of Their Efficacy by in Vitro and in Vivo Methods
Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to highly toxic organophosphorus compounds misused as chemical warfare agents for military as well as terroristic purposes. It differs from other highly toxic organophosphates by its chemical structure and by the fact that tabun-inhibited acetylcholinesterase is extraordinarily difficult to reactivate. The antidotal treatment of tabun ...
متن کامل